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ABSTRACT 

This paper explores the construction of a Trusted Execution Environment (TEE) 
which doesn’t rely on TrustZone or specific processing modes in order to achieve 
a high-performance operating environment with multiple layers of hardware 
enforced confidentiality and integrity. The composed TEE uses hardware 
intellectual property (IP) blocks, existing hardware-level protections, a hypervisor, 
Linux security module (LSM), and Linux kernel capabilities including a file system 
in order to provide the performance and multiple layers of confidentiality and 
integrity. Additionally, the TEE composition explores both open source and 
commercial solutions for achieving the same result. 
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1. INTRODUCTION 

Security practitioners are playing a serious game of catch up 
with respect to the proven ability of nefarious actors to exploit 
our Nation’s weapons systems [1] through cyber, logical, and 
side channel attacks. Common weapons in the fight against 
attackers, Trusted Execution Environments (TEEs) [2] are 
used in multiple industries for a variety of tasks including key 
management, digital rights management (DRM), and safety 
critical functions. While TEEs can easily be leveraged in the 
ground vehicle domain to enhance security, they frequently 
come with hits to performance and functionality, as they are 
generally implemented within the context of ARM TrustZone 
[3]. The use of TrustZone significantly inhibits the 
complexity and flexibility of these applications, which also 
increases the performance overhead associated with such 
solutions, making them less than desirable for safety-critical 
configurations and systems. The underlining premise of 
TrustZone is that it operates at a hardware-enforced privilege 
level separate from user facing applications and has dedicated 
memory thereby providing increased isolation and separation 
for these critical tasks.  

This same premise of enhanced hardware isolation and 
privilege separation can be extended through the use of other 
hardware constructs in conjunction with a hypervisor, 

existing open source / commercial Linux solutions, and 
platform capabilities, in order to create high performance TEE 
environments with full access to peripherals and interconnects 
for a variety of ground vehicle applications. Using an 
internally funded effort as an exemplar, this TEE 
development and demonstration discussion will combine: 1) 
open source components including a hypervisor and Linux 
kernel capabilities; and 2) existing Xilinx IP / Application 
notes to establish a high-performance TEE with full 
peripheral support on the Xilinx UltraScale+™ MPSoC 
platform [4]. The exemplar and resulting TEE solution will be 
usable in safety critical environments, such as those used 
within the context of ground vehicles. 

The resulting TEE will be equally applicable to current and 
future Xilinx parts as well as other ARM-based system on a 
chip (SOC)s both with and without programmable logic (PL). 
Similar solutions could also be developed and implemented 
in most modern Intel platforms, which have support for 
hardware virtualization and an Input / Output Memory 
Management Unit (IOMMU). In addition to establishing the 
requirements for high performance TEEs and discussing the 
attacks they thwart, this TEE construction and demonstration 
will also use an iterative, hands-on approach to establish a full 
TEE on a Xilinx MPSoC. 
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The built-up TEE will execute entirely within the 
application processor (i.e. A53) environment of the MPSoC, 
independent of ARM TrustZone.  The application processor 
TEE will be established as a combination hypervisor / secured 
Linux environment. Additionally, the exemplar TEE 
construction will configure of all the platform memory 
protection units (MMU), that enables both TEE applications 
and traditional system-level applications to execute 
concurrently on the same platform (with multiple levels of 
enforced separation and isolation). The hypervisor and Linux 
protections used to create the TEE will be demonstrated (and 
walked through) using a commercial product, the Crucible 
Security Suite. Throughout discussions, it will be highlighted 
where existing Open Source and Commercial solutions 
diverge. However, it should be noted, a similarly high 
performant TEE could be created with Xen (or any other 
hypervisor) [5], as well as existing Linux Security modules 
(LSM), and authentication / encryption components.  

The TEE will specifically leverage existing Xilinx security 
and isolation features within the MPSoC (and will identify 
what types of features would be required on other SOCs). The 
resulting TEE buildup will provide integrators and system 
developers with first-hand knowledge on how to integrate: 1) 
multiple open source and/or commercial components; 2) 
ARM capabilities; and 3) Xilinx IP blocks into high 
performance TEE solutions, with full access to peripherals, 
into their designs. The buildup and walkthrough will also 
highlight customer facing concerns of a TEE such as: 1) 
performance / throughput of peripherals, 2) impact on total 
system utilization, 3) ability to meet safety and/or security 
requirements, and 4) IP blocks used for separation and 
isolation of the TEE environment. The end result will be an 
easy-to-follow, repeatable process for seamlessly integrating 
isolation and security into the production environment of 
typical ground vehicle programs. 

  
2. TEE Fundamentals 

At its core, a TEE is a standalone execution environment 
which uses hardware isolation / security features and a 
separate run-level execution environment in order to perform 
sensitive operations. A TEE provides confidentiality and 
integrity services for their applications. Many processors 
(more specifically, ARM-based) and SoCs which use an 
ARM core utilize a separate execution mode (i.e. TrustZone) 
to provide a TEE. The use of TrustZone requires these 
processors to stop the main execution thread / OS, perform a 
context switch into the secure / trusted state, and perform TEE 
operations. Similarly, while not strictly a TEE, Intel 
processors utilize System Management Mode (SMM) in order 
to perform sensitive system management operations, such as 
power savings. Intel processors also provide the software 
guard extensions (SGX), which enable the execution of secure 

enclaves using TEE principles. Whether it’s SMM, SGX, or 
TrustZone, the use of these operating modes provides 
hardware protected memory ranges, limited access to 
peripherals, and separate hardware-enforced privilege levels 
for execution.  

Generally, a TEE consists of a dedicated hardware 
environment, and either a standalone application or a 
combination operating system (OS) and application stack. 
Additionally, most TEEs implement some form of the Bell–
LaPadula model [6] with read down, write up for data. This 
enables the TEE to access all (or at least the majority of) 
memory on the device, while still protecting the TEE’s 
memory itself. 

One of the key challenges with a TEE is that of overall 
system performance, and most TEEs don’t have a separate 
execution core, which prohibits concurrent execution with the 
main system processing. In order to enter into TEE execution, 
all (unsecure) processing on the host must be stopped, and the 
secure processing mode must be entered. This causes not only 
a context switch, but also forces the TEE to execute in a 
highly time constrained environment, much like a device 
driver, limiting the amount of processing which can be 
performed without impacting the rest of the executing 
applications (which may be safety critical, therefore have hard 
real-time constraints on execution).  

On modern, multicore processors and SoCs, a hypervisor 
enables TEEs to be constructed in a highly performant, robust 
manner (see Figure 1) while still affording the key properties 
of hardware-enforced confidentiality and integrity for TEE 
applications.  

 
Figure 1: Hypervisor TEE Construction 

The use of a hypervisor to isolate system resources enables 
a TEE to be dedicated to one or more execution cores, which 
are able to operate concurrently with main system operations 
that execute on the remaining system cores. In this way, TEE 
operations do not interrupt or hinder general system 
operations, while preserving the hardware enforced principals 
of confidentiality and integrity. 

 
3. Hypervisor Overview 

Modern computing architectures support the use of a 
hardware accelerated, virtual machine monitor (VMM). The 
VMM or hypervisor, enables software to assert positive 
control over all platform resources including memory, 
processors, and I/O devices. This positive control enables 
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resource assignment (and containment), access controls, and 
the sharing of system resources. Modern VMMs, such as Xen, 
rely on hardware acceleration for memory and process 
management, as well as device / guest isolation.  

The VMM configures each guest through the creation of a 
control data structure and specialized machine instructions. 
This guest data structure identifies the physical resources (i.e. 
memory, CPU cores and/or timeslices, and peripherals) a 
guest has access to, and is enforced by the underlying 
hardware. Additionally, the guest data structure enables the 
hypervisor to define events (i.e. instructions, memory access 
faults, IOPORT access, etc.) which stop the guest and 
transition back into the hypervisor   

System events such as a configured timer interrupt can be 
used by the hypervisor to task switch between multiple guests, 
thereby sharing the CPU’s resources. Similarly, the 
hypervisor can elect to have a guest consume all of the CPU’s 
resources by removing events (from the guest data structure) 
that would normally cause a trap into the hypervisor. Each 
physical CPU core has an active guest VM data structure 
pointer, which points to the currently active guest and 
corresponding guest data structure. The hypervisor can use a 
privileged set of instructions to have the processor update the 
guest pointer, and switch to a different guest as required for 
the overall platform configuration.  
3.1. Commercial Hypervisor overview 

Crucible is a secure execution environment based on the 
open source, Xen hypervisor. Crucible provides a trusted 
execution environment that addresses concerns unique to 
mission-critical computing (more specifically, the aerospace 
and defense (A&D) industry), including: secure boot, 
technology protection, cyber resilience, high-assurance 
operations, deterministic performance, and compatibility with 
common mission system hardware and software.  

Crucible is designed for use in hostile computing 
environments and operates as trusted supervisory software 
within the processor – configuring and controlling both 
hardware resources and software execution in order to ensure 
and maintain the integrity of system operations. Crucible 
leverages hardware-based roots-of-trust IP to perform a 
secure boot process and establish the basis for isolation and 
separation. During system operation, the hypervisor enforces 
logical isolation such that software mission loads 
execute within private enclaves with application-level 
granularity of hardware-enforced separation. This logical 
isolation is enforced even though the applications may be 
running on a single physical processor board, or within a 
single COTS OS. This addresses safety, security and 
confidentiality concerns, and improves overall mission 
assurance – especially given the reality of software faults and 
sophisticated cyber-attacks. Finally, Crucible has strong 
technology protections and anti-reverse engineering features 
built directly into the hypervisor. These features ensure that 

sensitive software in the system remains protected 
against unauthorized access, theft, and 
malicious modification – and that mission-critical 
functionality continues to operate unimpeded – even in the 
face of dedicated attackers and reverse engineers.   

During boot, Crucible takes over control of the central 
processing unit (CPU), IOMMU / system memory 
management unit (SMMU), memory management units / 
controllers, system configuration, peripheral allocation, and 
processor management. This enables Crucible to fully control 
the underlying hardware, and prevent a variety of logical, 
virtual, and physical attacks against the hypervisor, or the 
protected operational flight program (OFP) images. This 
policy is further enabled by the application of Flux Advanced 
Security Kernel (FLASK) [7] policies which enforce 
separation between the hypervisor and guests as well as 
between guests. Additionally, the FLASK policy to configure 
the hardware, separation, and memory management 
functionality is incorporated into the secure boot mechanism 
to enforce confidentiality and integrity requirements. 

Crucible provides run-time logical and virtual protection for 
guest VMs and protected applications. Crucible prevents 
protected applications from being reverse engineered, 
analyzed, removed from the system, or transferred to a 
different platform / system. 
              
4. TEE Construction and Overview 
4.1. TEE Requirements 

In order to establish confidentiality and integrity for the 
TEE, the following must be afforded: secure boot, 
configuration integrity, deterministic performance, 
mandatory access controls, isolation and partitioning. All of 
these requirements can be met through a combination of 
platform (i.e. Xilinx) IP, and commercial or Open Source 
software stacks. It is essential that these requirements be 
enforced within the TEE guest(s) as well as guests that are 
running external to the TEE, otherwise additional side-
channel attack vectors against the TEE may be introduced. 

 
4.2. TEE Overview 

The highly performant TEE will execute completely within 
the application processing unit (APU) (at exception level 
(EL)1/EL2) and will provide freedom of interference from 
other applications in the application processing unit (APU). 
Further, the TEE will be isolated from applications executing 
within the real-time processing unit (RPU), and peripherals 
across the system (including those within the fabric itself). 
The TEE will not utilize TrustZone within the APU in order 
to provide a higher performing solution with full access to 
system peripherals. By not utilizing TrustZone, the TEE is 
able to execute concurrently with the main applications 
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executing on the APU, and support safety-critical 
applications. 

The TEE is composed of the Xen hypervisor (configured as 
a separation / isolation kernel), one or more Linux Security 
Modules (i.e. SELinux [8] and/or AppArmor [9]) executing at 
EL1, and TEE applications executing at EL0. Additionally, to 
complement the LSM, either a filesystem which encrypts and 
authenticates files, or if required, various Linux capabilities 
such as IMA to provide integrity services will be used. 
Alternatively, commercial solutions such as the Crucible 
Security Suite, combine a hypervisor tailored for secure boot, 
configuration integrity, deterministic performance, 
mandatory access controls, isolation and partitioning can be 
used to establish and provide the TEE, while also enabling a 
wide variety of data at rest and general cyber security 
concerns to be met.  

 
Figure 2: TEE Design 

The TEE is established (i.e. secure boot) through a 
combination of Xilinx IP blocks and existing processes, and 
is used to authenticate, isolate and launch TEE applications 
(see Figure 2) while continuing to provide confidentiality and 
integrity. 

Using the previously developed exemplar, the TEE 
construction and demonstration will walk the user through 
configuring Xen on ARM to function as a real-time separation 
and isolation kernel. This will enable the TEE to be isolated 
to one or more APU processing cores, while also enabling the 
TEE to execute concurrently with the main applications on 
the system. This configuration will highlight the industry best 
practices [10] for real-time systems and apply the principles 
of: (1) real time scheduler use for guests with RT workloads; 
(2) no paging / memory translation; (3) no hardware 
emulation; and (4) minimal interrupt latency. This will enable 
deterministic performance for executing TEE applications 
and enable developers to better utilize the full resources of the 
MPSoC or similar ARM-based SoCs. As part of this 

configuration, 1-core on the platform will be dedicated to 
TEE operations, thereby removing time sensitive constraints 
of the rest of the system. This will enable the TEE applications 
to execute continuously, without interruption and without 
impacting the performance of the rest of the system. 
Additionally, this will enable the TEE to have full access to 
system peripherals, independent of other guests and/or 
applications. 
4.3. TEE Construction  

Bootgen [11] will be used to create a secure boot image. The 
image will contain Xilinx memory management and 
separation unit configuration (i.e. XPPU / XMMU / SMMU), 
configuration for an application processor hypervisor (i.e. 
Xen), applications running lockstep in the RPU, RPU 
application, u-boot, and an extensible linker format (ELF) 
image containing the application processor hypervisor and 
DOM-0. During secure boot, u-boot will authenticate and 
decrypt the hypervisor, including DOM-0 if necessary, for 
system construction.  

SoCs such as the Xilinx MPSoC provide a wide variety of 
mechanisms that can be used for key (i.e. encryption and 
authentication keys for secure boot) storage. While the key 
storage location is largely dependent on individual system 
characteristics and the threat model, it is also largely 
irrelevant to the construction of a TEE, as long as one or more 
encryption / authentication keys are made available. The 
Xilinx App Note 1323 will be used to configure secure boot 
for the reference implementation. 

One key aspect of a TEE that is important to achieve is that 
of reduced attack surface. Xen on ARM can be reduced to 
around 50KLOC, with opportunities to further reduce this 
based on operational constraints and further use of the 
KBUILD environment to remove unneeded features and 
functionality from the core hypervisor being used to establish 
the TEE runtime. The construction and exemplar 
demonstration will also highlight ongoing work within the 
Xen community to develop dom0-less and safety-critical 
capabilities for the ARM platform, which have the potential 
to enable even more fined grained resource utilization and 
deterministic execution, further reduce the attack surface, and 
provide enablement for the generation of safety critical 
hypervisor artifacts for the core hypervisor.  

The hypervisor will configure the system memory 
management unit (SMMU) to assign peripherals and memory 
access requests to specific guests. This will enable the guests, 
stored on the platform secure digital (SD) card, to be 
authenticated and launched in a secure fashion thereby 
extending trust from platform secure boot up to virtualized 
guests executing in the application processor. The Xilinx 
secure boot will be used to authenticate and decrypt the 
hypervisor (and associated configuration), as well as enable 
the key release to continue the boot process. Once the 
hypervisor’s control domain has been authenticated and 
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decrypted, the individual guests (including the TEE) can be 
read from the platform’s SDCARD and authenticated and/or 
decrypted as required by each guest. The authenticated and 
decrypted guests will then be executed with hardware 
enforced separation / isolation and unique system resources. 

During boot of the application processor, the guests and 
individual TEEs, the guest’s key encrypting keys (KEKs) will 
be retrieved from the platform’s secure key storage. A chain 
of trust (authentication / encryption) is then established from 
the TEE applications to platform secure boot with isolation 
being enforced at multiple levels using hardware IP blocks, 
ARM EL2/1, and software. 

Through the use of an LSM, the kernel (EL1) in each guest 
(including the TEE) will further restrict peripheral and bus 
access (configured in the XPMU to restrict access to the 
application processor) to limit peripheral access to a specific 
TEE application. The LSM in the TEE (guest) will also be 
responsible for enforcing mandatory access controls around 
the TEE application(s), in order to further decrease the attack 
surface of the TEE. In order to provide additional 
confidentiality and integrity for the TEE applications, several 
different options will be presented: (1) the use of an encrypted 
filesystem and Linux IMA; (2) the use of device mapper 
encrypt and integrity layers; and (3) commercial filesystems 
such as Star Lab’s fortifs which provide both integrity and 
confidentiality of the underlying data. These options will 
enable confidentiality and integrity to be preserved for the 
TEE applications from rest through runtime and into 
retirement. It should be noted that encrypting file systems 
such as ecryptfs do not provide for integrity of data and are 
only focused on confidentiality, therefore they provide an 
incomplete solution for use with a TEE. Regardless of the 
approach chosen, key management will be offloaded to the 
platform (and will be implemented external to the high-
performance TEE).  

 
5. High Performance TEE Summary 

This exemplar TEE will lay the ground work for using a 
hypervisor and Linux kernel capabilities for establishing a 
high-performance TEE on the Xilinx MPSoC, that operates 
independent of ARM’s TrustZone, providing benefit of 
improved complexity, flexibility, and access to peripherals to 
the trusted applications, as well as improved concurrence with 
non-trusted safety critical applications thereby improving 
their performance as well. The demonstration and exemplar 
TEE will establish the background required for the 
establishment of a TEE external to TrustZone, the use of a 
hypervisor in a real-time environment, and provide a hands-
on approach to integrating multiple components from industry 
and the community. The benefit to the ground vehicle domain 

will be an easy to follow recipe for configuring, 
implementing, and verifying enhanced security in a variety of 
critical use cases where performance and functionality cannot 
be degraded with the addition of security features. The 
construction of a TEE external to TrustZone will provide the 
ground vehicle domain with multiple paths and design flows 
for integrating security into the production process and 
leveraging all of the features of complex SOCs 
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