
2019 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY
SYMPOSIUM

GROUND SYSTEMS CYBER ENGINEERING TECHNICAL SESSION
AUGUST 13-15, 2019 - NOVI, MICHIGAN

HIGH PERFORMANCE TRUSTED EXECUTION ENVIRONMENT

Jonathan Kline

CTO, Star Lab, Huntsville, AL

ABSTRACT

This paper explores the construction of a Trusted Execution Environment (TEE)
which doesn’t rely on TrustZone or specific processing modes in order to achieve
a high-performance operating environment with multiple layers of hardware
enforced confidentiality and integrity. The composed TEE uses hardware
intellectual property (IP) blocks, existing hardware-level protections, a hypervisor,
Linux security module (LSM), and Linux kernel capabilities including a file system
in order to provide the performance and multiple layers of confidentiality and
integrity. Additionally, the TEE composition explores both open source and
commercial solutions for achieving the same result.

Citation: J. Kline, “High Performance Trusted Execution Environment”, In Proceedings of the Ground Vehicle
Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 13-15, 2019.

1. INTRODUCTION

Security practitioners are playing a serious game of catch up
with respect to the proven ability of nefarious actors to exploit
our Nation’s weapons systems [1] through cyber, logical, and
side channel attacks. Common weapons in the fight against
attackers, Trusted Execution Environments (TEEs) [2] are
used in multiple industries for a variety of tasks including key
management, digital rights management (DRM), and safety
critical functions. While TEEs can easily be leveraged in the
ground vehicle domain to enhance security, they frequently
come with hits to performance and functionality, as they are
generally implemented within the context of ARM TrustZone
[3]. The use of TrustZone significantly inhibits the
complexity and flexibility of these applications, which also
increases the performance overhead associated with such
solutions, making them less than desirable for safety-critical
configurations and systems. The underlining premise of
TrustZone is that it operates at a hardware-enforced privilege
level separate from user facing applications and has dedicated
memory thereby providing increased isolation and separation
for these critical tasks.

This same premise of enhanced hardware isolation and
privilege separation can be extended through the use of other
hardware constructs in conjunction with a hypervisor,

existing open source / commercial Linux solutions, and
platform capabilities, in order to create high performance TEE
environments with full access to peripherals and interconnects
for a variety of ground vehicle applications. Using an
internally funded effort as an exemplar, this TEE
development and demonstration discussion will combine: 1)
open source components including a hypervisor and Linux
kernel capabilities; and 2) existing Xilinx IP / Application
notes to establish a high-performance TEE with full
peripheral support on the Xilinx UltraScale+™ MPSoC
platform [4]. The exemplar and resulting TEE solution will be
usable in safety critical environments, such as those used
within the context of ground vehicles.

The resulting TEE will be equally applicable to current and
future Xilinx parts as well as other ARM-based system on a
chip (SOC)s both with and without programmable logic (PL).
Similar solutions could also be developed and implemented
in most modern Intel platforms, which have support for
hardware virtualization and an Input / Output Memory
Management Unit (IOMMU). In addition to establishing the
requirements for high performance TEEs and discussing the
attacks they thwart, this TEE construction and demonstration
will also use an iterative, hands-on approach to establish a full
TEE on a Xilinx MPSoC.

Page 2 of 5

The built-up TEE will execute entirely within the
application processor (i.e. A53) environment of the MPSoC,
independent of ARM TrustZone. The application processor
TEE will be established as a combination hypervisor / secured
Linux environment. Additionally, the exemplar TEE
construction will configure of all the platform memory
protection units (MMU), that enables both TEE applications
and traditional system-level applications to execute
concurrently on the same platform (with multiple levels of
enforced separation and isolation). The hypervisor and Linux
protections used to create the TEE will be demonstrated (and
walked through) using a commercial product, the Crucible
Security Suite. Throughout discussions, it will be highlighted
where existing Open Source and Commercial solutions
diverge. However, it should be noted, a similarly high
performant TEE could be created with Xen (or any other
hypervisor) [5], as well as existing Linux Security modules
(LSM), and authentication / encryption components.

The TEE will specifically leverage existing Xilinx security
and isolation features within the MPSoC (and will identify
what types of features would be required on other SOCs). The
resulting TEE buildup will provide integrators and system
developers with first-hand knowledge on how to integrate: 1)
multiple open source and/or commercial components; 2)
ARM capabilities; and 3) Xilinx IP blocks into high
performance TEE solutions, with full access to peripherals,
into their designs. The buildup and walkthrough will also
highlight customer facing concerns of a TEE such as: 1)
performance / throughput of peripherals, 2) impact on total
system utilization, 3) ability to meet safety and/or security
requirements, and 4) IP blocks used for separation and
isolation of the TEE environment. The end result will be an
easy-to-follow, repeatable process for seamlessly integrating
isolation and security into the production environment of
typical ground vehicle programs.

2. TEE Fundamentals

At its core, a TEE is a standalone execution environment
which uses hardware isolation / security features and a
separate run-level execution environment in order to perform
sensitive operations. A TEE provides confidentiality and
integrity services for their applications. Many processors
(more specifically, ARM-based) and SoCs which use an
ARM core utilize a separate execution mode (i.e. TrustZone)
to provide a TEE. The use of TrustZone requires these
processors to stop the main execution thread / OS, perform a
context switch into the secure / trusted state, and perform TEE
operations. Similarly, while not strictly a TEE, Intel
processors utilize System Management Mode (SMM) in order
to perform sensitive system management operations, such as
power savings. Intel processors also provide the software
guard extensions (SGX), which enable the execution of secure

enclaves using TEE principles. Whether it’s SMM, SGX, or
TrustZone, the use of these operating modes provides
hardware protected memory ranges, limited access to
peripherals, and separate hardware-enforced privilege levels
for execution.

Generally, a TEE consists of a dedicated hardware
environment, and either a standalone application or a
combination operating system (OS) and application stack.
Additionally, most TEEs implement some form of the Bell–
LaPadula model [6] with read down, write up for data. This
enables the TEE to access all (or at least the majority of)
memory on the device, while still protecting the TEE’s
memory itself.

One of the key challenges with a TEE is that of overall
system performance, and most TEEs don’t have a separate
execution core, which prohibits concurrent execution with the
main system processing. In order to enter into TEE execution,
all (unsecure) processing on the host must be stopped, and the
secure processing mode must be entered. This causes not only
a context switch, but also forces the TEE to execute in a
highly time constrained environment, much like a device
driver, limiting the amount of processing which can be
performed without impacting the rest of the executing
applications (which may be safety critical, therefore have hard
real-time constraints on execution).

On modern, multicore processors and SoCs, a hypervisor
enables TEEs to be constructed in a highly performant, robust
manner (see Figure 1) while still affording the key properties
of hardware-enforced confidentiality and integrity for TEE
applications.

Figure 1: Hypervisor TEE Construction

The use of a hypervisor to isolate system resources enables
a TEE to be dedicated to one or more execution cores, which
are able to operate concurrently with main system operations
that execute on the remaining system cores. In this way, TEE
operations do not interrupt or hinder general system
operations, while preserving the hardware enforced principals
of confidentiality and integrity.

3. Hypervisor Overview

Modern computing architectures support the use of a
hardware accelerated, virtual machine monitor (VMM). The
VMM or hypervisor, enables software to assert positive
control over all platform resources including memory,
processors, and I/O devices. This positive control enables

Hypervisor

TEE
Guest

App
Guest

App
Guest

Core 0 Core(s) 1-3

SMMU XPMMU DDR

Page 3 of 5

resource assignment (and containment), access controls, and
the sharing of system resources. Modern VMMs, such as Xen,
rely on hardware acceleration for memory and process
management, as well as device / guest isolation.

The VMM configures each guest through the creation of a
control data structure and specialized machine instructions.
This guest data structure identifies the physical resources (i.e.
memory, CPU cores and/or timeslices, and peripherals) a
guest has access to, and is enforced by the underlying
hardware. Additionally, the guest data structure enables the
hypervisor to define events (i.e. instructions, memory access
faults, IOPORT access, etc.) which stop the guest and
transition back into the hypervisor

System events such as a configured timer interrupt can be
used by the hypervisor to task switch between multiple guests,
thereby sharing the CPU’s resources. Similarly, the
hypervisor can elect to have a guest consume all of the CPU’s
resources by removing events (from the guest data structure)
that would normally cause a trap into the hypervisor. Each
physical CPU core has an active guest VM data structure
pointer, which points to the currently active guest and
corresponding guest data structure. The hypervisor can use a
privileged set of instructions to have the processor update the
guest pointer, and switch to a different guest as required for
the overall platform configuration.
3.1. Commercial Hypervisor overview

Crucible is a secure execution environment based on the
open source, Xen hypervisor. Crucible provides a trusted
execution environment that addresses concerns unique to
mission-critical computing (more specifically, the aerospace
and defense (A&D) industry), including: secure boot,
technology protection, cyber resilience, high-assurance
operations, deterministic performance, and compatibility with
common mission system hardware and software.

Crucible is designed for use in hostile computing
environments and operates as trusted supervisory software
within the processor – configuring and controlling both
hardware resources and software execution in order to ensure
and maintain the integrity of system operations. Crucible
leverages hardware-based roots-of-trust IP to perform a
secure boot process and establish the basis for isolation and
separation. During system operation, the hypervisor enforces
logical isolation such that software mission loads
execute within private enclaves with application-level
granularity of hardware-enforced separation. This logical
isolation is enforced even though the applications may be
running on a single physical processor board, or within a
single COTS OS. This addresses safety, security and
confidentiality concerns, and improves overall mission
assurance – especially given the reality of software faults and
sophisticated cyber-attacks. Finally, Crucible has strong
technology protections and anti-reverse engineering features
built directly into the hypervisor. These features ensure that

sensitive software in the system remains protected
against unauthorized access, theft, and
malicious modification – and that mission-critical
functionality continues to operate unimpeded – even in the
face of dedicated attackers and reverse engineers.

During boot, Crucible takes over control of the central
processing unit (CPU), IOMMU / system memory
management unit (SMMU), memory management units /
controllers, system configuration, peripheral allocation, and
processor management. This enables Crucible to fully control
the underlying hardware, and prevent a variety of logical,
virtual, and physical attacks against the hypervisor, or the
protected operational flight program (OFP) images. This
policy is further enabled by the application of Flux Advanced
Security Kernel (FLASK) [7] policies which enforce
separation between the hypervisor and guests as well as
between guests. Additionally, the FLASK policy to configure
the hardware, separation, and memory management
functionality is incorporated into the secure boot mechanism
to enforce confidentiality and integrity requirements.

Crucible provides run-time logical and virtual protection for
guest VMs and protected applications. Crucible prevents
protected applications from being reverse engineered,
analyzed, removed from the system, or transferred to a
different platform / system.

4. TEE Construction and Overview
4.1. TEE Requirements

In order to establish confidentiality and integrity for the
TEE, the following must be afforded: secure boot,
configuration integrity, deterministic performance,
mandatory access controls, isolation and partitioning. All of
these requirements can be met through a combination of
platform (i.e. Xilinx) IP, and commercial or Open Source
software stacks. It is essential that these requirements be
enforced within the TEE guest(s) as well as guests that are
running external to the TEE, otherwise additional side-
channel attack vectors against the TEE may be introduced.

4.2. TEE Overview

The highly performant TEE will execute completely within
the application processing unit (APU) (at exception level
(EL)1/EL2) and will provide freedom of interference from
other applications in the application processing unit (APU).
Further, the TEE will be isolated from applications executing
within the real-time processing unit (RPU), and peripherals
across the system (including those within the fabric itself).
The TEE will not utilize TrustZone within the APU in order
to provide a higher performing solution with full access to
system peripherals. By not utilizing TrustZone, the TEE is
able to execute concurrently with the main applications

Page 4 of 5

executing on the APU, and support safety-critical
applications.

The TEE is composed of the Xen hypervisor (configured as
a separation / isolation kernel), one or more Linux Security
Modules (i.e. SELinux [8] and/or AppArmor [9]) executing at
EL1, and TEE applications executing at EL0. Additionally, to
complement the LSM, either a filesystem which encrypts and
authenticates files, or if required, various Linux capabilities
such as IMA to provide integrity services will be used.
Alternatively, commercial solutions such as the Crucible
Security Suite, combine a hypervisor tailored for secure boot,
configuration integrity, deterministic performance,
mandatory access controls, isolation and partitioning can be
used to establish and provide the TEE, while also enabling a
wide variety of data at rest and general cyber security
concerns to be met.

Figure 2: TEE Design

The TEE is established (i.e. secure boot) through a
combination of Xilinx IP blocks and existing processes, and
is used to authenticate, isolate and launch TEE applications
(see Figure 2) while continuing to provide confidentiality and
integrity.

Using the previously developed exemplar, the TEE
construction and demonstration will walk the user through
configuring Xen on ARM to function as a real-time separation
and isolation kernel. This will enable the TEE to be isolated
to one or more APU processing cores, while also enabling the
TEE to execute concurrently with the main applications on
the system. This configuration will highlight the industry best
practices [10] for real-time systems and apply the principles
of: (1) real time scheduler use for guests with RT workloads;
(2) no paging / memory translation; (3) no hardware
emulation; and (4) minimal interrupt latency. This will enable
deterministic performance for executing TEE applications
and enable developers to better utilize the full resources of the
MPSoC or similar ARM-based SoCs. As part of this

configuration, 1-core on the platform will be dedicated to
TEE operations, thereby removing time sensitive constraints
of the rest of the system. This will enable the TEE applications
to execute continuously, without interruption and without
impacting the performance of the rest of the system.
Additionally, this will enable the TEE to have full access to
system peripherals, independent of other guests and/or
applications.
4.3. TEE Construction

Bootgen [11] will be used to create a secure boot image. The
image will contain Xilinx memory management and
separation unit configuration (i.e. XPPU / XMMU / SMMU),
configuration for an application processor hypervisor (i.e.
Xen), applications running lockstep in the RPU, RPU
application, u-boot, and an extensible linker format (ELF)
image containing the application processor hypervisor and
DOM-0. During secure boot, u-boot will authenticate and
decrypt the hypervisor, including DOM-0 if necessary, for
system construction.

SoCs such as the Xilinx MPSoC provide a wide variety of
mechanisms that can be used for key (i.e. encryption and
authentication keys for secure boot) storage. While the key
storage location is largely dependent on individual system
characteristics and the threat model, it is also largely
irrelevant to the construction of a TEE, as long as one or more
encryption / authentication keys are made available. The
Xilinx App Note 1323 will be used to configure secure boot
for the reference implementation.

One key aspect of a TEE that is important to achieve is that
of reduced attack surface. Xen on ARM can be reduced to
around 50KLOC, with opportunities to further reduce this
based on operational constraints and further use of the
KBUILD environment to remove unneeded features and
functionality from the core hypervisor being used to establish
the TEE runtime. The construction and exemplar
demonstration will also highlight ongoing work within the
Xen community to develop dom0-less and safety-critical
capabilities for the ARM platform, which have the potential
to enable even more fined grained resource utilization and
deterministic execution, further reduce the attack surface, and
provide enablement for the generation of safety critical
hypervisor artifacts for the core hypervisor.

The hypervisor will configure the system memory
management unit (SMMU) to assign peripherals and memory
access requests to specific guests. This will enable the guests,
stored on the platform secure digital (SD) card, to be
authenticated and launched in a secure fashion thereby
extending trust from platform secure boot up to virtualized
guests executing in the application processor. The Xilinx
secure boot will be used to authenticate and decrypt the
hypervisor (and associated configuration), as well as enable
the key release to continue the boot process. Once the
hypervisor’s control domain has been authenticated and

TEE Guest

Kernel Security & Protection

TEE App TEE App TEE App

Core 0 Dedicated Memory Peripherals

Hypervisor enforced isolation

Page 5 of 5

decrypted, the individual guests (including the TEE) can be
read from the platform’s SDCARD and authenticated and/or
decrypted as required by each guest. The authenticated and
decrypted guests will then be executed with hardware
enforced separation / isolation and unique system resources.

During boot of the application processor, the guests and
individual TEEs, the guest’s key encrypting keys (KEKs) will
be retrieved from the platform’s secure key storage. A chain
of trust (authentication / encryption) is then established from
the TEE applications to platform secure boot with isolation
being enforced at multiple levels using hardware IP blocks,
ARM EL2/1, and software.

Through the use of an LSM, the kernel (EL1) in each guest
(including the TEE) will further restrict peripheral and bus
access (configured in the XPMU to restrict access to the
application processor) to limit peripheral access to a specific
TEE application. The LSM in the TEE (guest) will also be
responsible for enforcing mandatory access controls around
the TEE application(s), in order to further decrease the attack
surface of the TEE. In order to provide additional
confidentiality and integrity for the TEE applications, several
different options will be presented: (1) the use of an encrypted
filesystem and Linux IMA; (2) the use of device mapper
encrypt and integrity layers; and (3) commercial filesystems
such as Star Lab’s fortifs which provide both integrity and
confidentiality of the underlying data. These options will
enable confidentiality and integrity to be preserved for the
TEE applications from rest through runtime and into
retirement. It should be noted that encrypting file systems
such as ecryptfs do not provide for integrity of data and are
only focused on confidentiality, therefore they provide an
incomplete solution for use with a TEE. Regardless of the
approach chosen, key management will be offloaded to the
platform (and will be implemented external to the high-
performance TEE).

5. High Performance TEE Summary

This exemplar TEE will lay the ground work for using a
hypervisor and Linux kernel capabilities for establishing a
high-performance TEE on the Xilinx MPSoC, that operates
independent of ARM’s TrustZone, providing benefit of
improved complexity, flexibility, and access to peripherals to
the trusted applications, as well as improved concurrence with
non-trusted safety critical applications thereby improving
their performance as well. The demonstration and exemplar
TEE will establish the background required for the
establishment of a TEE external to TrustZone, the use of a
hypervisor in a real-time environment, and provide a hands-
on approach to integrating multiple components from industry
and the community. The benefit to the ground vehicle domain

will be an easy to follow recipe for configuring,
implementing, and verifying enhanced security in a variety of
critical use cases where performance and functionality cannot
be degraded with the addition of security features. The
construction of a TEE external to TrustZone will provide the
ground vehicle domain with multiple paths and design flows
for integrating security into the production process and
leveraging all of the features of complex SOCs

6. References

[1] US Government Accountability Office, "WEAPON
SYSTEMS CYBERSECURITY: DOD Just
Beginning to Grapple with Scale of Vulnerabilities,"
GAO, 2018.

[2] Global Platform, "Introduction to Trusted
Execution Environments," Global Platform, 2018.

[3] ARM Ltd, "ARM Trust Zone," 2019. [Online].
Available: https://developer.arm.com/ip-
products/security-ip/trustzone. [Accessed 14 06
2019].

[4] Xilinx Corporation, "Zynq UltraScale+ Device
Technical Reference Manual," Xilinx Corporation,
2019.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T.
Harris, A. Ho, R. Neugebauer, I. Pratt and A.
Warfield, "Xen and the Art of Virtualization," in ACM
SOSP '03, 2003.

[6] D. E. Bell and L. La Padula, "SECURE
CCMPUTER SYSTEM: UNIFIED EXPOSITION
AND MULTICS INTERPRETATION," The MITRE
Corporation for Deputy for Command and
Management Systems Electronic Systems Division,
AFSC , Bedford, MA, 1976.

[7] Secure Computing Corporation, "Assurance in the
Fluke Microkernel Final Report," Secure Computing
Corporation, Roseville, 1997.

[8] S. D. Smalley, C. Vance and W. Salamon,
"Implementing SELinux as a Linux Security
Module," NAI Labs, Ft Meade, 2006.

[9] V. Danen, "Immunix System 7: Linux security with
a hard hat (not a Red Hat)," Tech Republic, 2001.

[10] X. Fan, Real-Time Embedded Systems, Newnes,
2015.

[11] Xilinx Corporation, "Bootgen User Guide," Xilinx
Corporation, 2018.

